15.6.2 Lab – Configure IPv4 and IPv6 Static and Default Routes Answers Full 100% 2024

This is Cisco 15.6.2 Lab – Configure IPv4 and IPv6 Static and Default Routes Answers Full 100% 2024 for Cisco CCNA 2 v7 SRWE v7.02.

Lab – Configure IPv4 and IPv6 Static and Default Routes (Answers Version)

Answers Note: Red font color or gray highlights indicate text that appears in the Answers copy only.

Topology

This topology has 2 routers and 2 switches. R1 has two loopback interfaces: lo 1 and lo 2. R2 has two loopback interfaces: lo 1 and lo 2. R1 G0/0/0 is connected to R2 G0/0/0. R2 G0/0/1 is connected to S2 F0/5. S2 F0/4 is connected S1 F0/4. S1 F0/5 is connected to R1 G0/0/1.

Addressing Table

Device

Interface

IP Address / Prefix

R1

G0/0/0

172.16.1.1 /24

R1

G0/0/0

2001:db8:acad:2::1 /64

R1

G0/0/0

fe80::1

R1

G0/0/1

192.168.1.1 /24

R1

G0/0/1

2001:db8:acad:1::1 /64

R1

G0/0/1

fe80::1

R1

Loopback1

10.1.0.1 /24

R1

Loopback1

2001:db8:acad:10::1 /64

R1

Loopback1

fe80::1

R1

Loopback2

209.165.200.225 /27

R1

Loopback2

2001:db8:acad:209::1 /64

R1

Loopback2

fe80::1

R2

G0/0/0

172.16.1.2 /24

R2

G0/0/0

2001:db8:acad:2::2 /64

R2

G0/0/0

fe80::2

R2

G0/0/1

192.168.1.2 /24

R2

G0/0/1

2001:db8:acad:1::2 /64

R2

G0/0/1

fe80::2

R2

Loopback1

10.2.0.1 /24

R2

Loopback1

2001:db8:acad:11::2 /64

R2

Loopback1

fe80::2

R2

Loopback2

209.165.200.193 /27

R2

Loopback2

2001:db8:acad:210::1 /64

R2

Loopback2

fe80::2

Objectives

Part 1: Build the Network and Configure Basic Device Settings

Part 2: Configure and verify IP and IPv6 addressing on R1 and R2

Part 3: Configure and verify static and default routing for IPv4 on R1 and R2

Part 4: Configure and verify static and default routing for IPv6 on R1 and R2

Background / Scenario

Static and Default routing are the simplest forms of network routing and configured manually. They are fixed, meaning that they do not change dynamically to meet changing network conditions. They are either valid and made available to the routing table or invalid and not made available to the routing table. Static routes have an administrative distance of one by default. However, static and default routes can be configured with an administrator-defined administrative distance. This capability allows the administrator to put the static or default route in reserve, and only make it available to the routing table when routes with lower administrative distances (usually generated by dynamic routing protocols) are no longer valid.

Note:In this lab you will configure static, default, and floating default routes for both IPv4 and IPv6 which may not reflect networking best practices.

Note: The routers used with CCNA hands-on labs are Cisco 4221 with Cisco IOS XE Release 16.9.4 (universalk9 image). The switches used in the labs are Cisco Catalyst 2960s with Cisco IOS Release 15.2(2) (lanbasek9 image). Other routers, switches, and Cisco IOS versions can be used. Depending on the model and Cisco IOS version, the commands available and the output produced might vary from what is shown in the labs. Refer to the Router Interface Summary Table at the end of the lab for the correct interface identifiers.

Note: Ensure that the routers and switches have been erased and have no startup configurations. If you are unsure contact your Answers.

Answers Note: Refer to the Answers Lab Manual for the procedures to initialize and reload devices

Required Resources

  • 2 Routers (Cisco 4221 with Cisco IOS XE Release 16.9.4 universal image or comparable)
  • 2 Switches (Cisco 2960 with Cisco IOS Release 15.2(2) lanbasek9 image or comparable)
  • 1 PC (Windows with a terminal emulation program, such as Tera Term)
  • Console cables to configure the Cisco IOS devices via the console ports
  • Ethernet cables as shown in the topology

Instructions

Part 1:Build the Network and Configure Basic Device Settings

In Part 1, you will set up the network topology and configure basic settings on the PC hosts and switches.

Step 1:Cable the network as shown in the topology.

Attach the devices as shown in the topology diagram, and cable as necessary.

Step 2:Configure basic settings for each router.

  1. Assign a device name to the router.

Open configuration window

router(config)# hostname R1

router(config)# hostname R2

  1. Disable DNS lookup to prevent the router from attempting to translate incorrectly entered commands as though they were host names.

R1(config)# no ip domain lookup

R2(config)# no ip domain lookup

  1. Assign class as the privileged EXEC encrypted password.

R1(config)# enable secret class

R2(config)# enable secret class

  1. Assign cisco as the console password and enable login.

R1(config)# line console 0

R1(config-line)# password cisco

R1(config-line)# login

R2(config)# line console 0

R2(config-line)# password cisco

R2(config-line)# login

  1. Assign cisco as the VTY password and enable login.

R1(config)# line vty 0 4

R1(config-line)# password cisco

R1(config-line)# login

R2(config)# line vty 0 4

R2(config-line)# password cisco

R2(config-line)# login

  1. Encrypt the plaintext passwords.

R1(config)# service password-encryption

R2(config)# service password-encryption

  1. Create a banner that warns anyone accessing the device that unauthorized access is prohibited.

R1(config)# banner motd $ Authorized Users Only! $

R2(config)# banner motd $ Authorized Users Only! $

  1. Save the running configuration to the startup configuration file.

R1(config)# exit

R1# copy running-config startup-config

R2(config)# exit

R2# copy running-config startup-config

Close configuration window

Step 3:Configure basic settings for each switch.

Open configuration window

  1. Assign a device name to the switch.

switch(config)# hostname S1

switch(config)# hostname S2

  1. Disable DNS lookup to prevent the router from attempting to translate incorrectly entered commands as though they were host names.

S1(config)# no ip domain-lookup

S2(config)# no ip domain-lookup

  1. Assign class as the privileged EXEC encrypted password.

S1(config)# enable secret class

S2(config)# enable secret class

  1. Assign cisco as the console password and enable login.

S1(config)# line console 0

S1(config-line)# password cisco

S1(config-line)# login

S2(config)# line console 0

S2(config-line)# password cisco

S2(config-line)# login

  1. Assign cisco as the VTY password and enable login.

S1(config)# line vty 0 15

S1(config-line)# password cisco

S1(config-line)# login

S2(config)# line vty 0 15

S2(config-line)# password cisco

S2(config-line)# login

  1. Encrypt the plaintext passwords.

S1(config)# service password-encryption

S2(config)# service password-encryption

  1. Create a banner that warns anyone accessing the device that unauthorized access is prohibited.

S1(config)# banner motd $ Authorized Users Only! $

S2(config)# banner motd $ Authorized Users Only! $

  1. Shutdown all interfaces that will not be used.

S1(config)# interface range f0/13, f0/6-24, g0/1-2

S1(config-if-range)# shutdown

S2(config)# interface range f0/13, f0/6-24, g0/1-2

S2(config-if-range)# shutdown

  1. Save the running configuration to the startup configuration file.

S1(config-if-range)# exit

S1# copy running-config startup-config

S2(config-if-range)# exit

S2# copy running-config startup-config

Question:

Issuing the command show cdp neighbors at this point on R1 or R2 results in an empty list. Explain.

Because the router interfaces are shut down by default.

Close configuration window

Part 2:Configure and verify IPv4 and IPv6 addressing on R1 and R2

In Part 2, you will configure and verify the IPv4 and IPv6 addresses on R1 and R2. Use the table above for the information necessary to complete this part.

Step 1:Configure IP addresses for both routers.

Open configuration window

  1. Enable IPv6 Unicast Routing on both routers.

R1(config)# ipv6 unicast-routing

R2(config)# ipv6 unicast-routing

  1. Configure the IP address for all the interfaces according to the Addressing Table.

R1(config)# interface g0/0/0

R1(config-if)# ip address 172.16.1.1 255.255.255.0

R1(config-if)# ipv6 address fe80::1 link-local

R1(config-if)# ipv6 address 2001:db8:acad:2::1/64

R1(config-if)# no shutdown

R1(configif)# interface g0/0/1

R1(config-if)# ip address 192.168.1.1 255.255.255.0

R1(config-if)# ipv6 address fe80::1 link-local

R1(config-if)# ipv6 address 2001:db8:acad:1::1/64

R1(config-if)# no shutdown

R1(configif)# interface lo1

R1(config-if)# ip address 10.1.0.1 255.255.255.0

R1(config-if)# ipv6 address fe80::1 link-local

R1(config-if)# ipv6 address 2001:db8:acad:10::1/64

R1(config-if)# no shutdown

R1(configif)# interface lo2

R1(config-if)# ip address 209.165.200.225 255.255.255.224

R1(config-if)# ipv6 address fe80::1 link-local

R1(config-if)# ipv6 address 2001:db8:acad:209::1/64

R1(config-if)# no shutdown

R2(config)# interface g0/0/0

R2(config-if)# ip address 172.16.1.2 255.255.255.0

R2(config-if)# ipv6 address fe80::2 link-local

R2(config-if)# ipv6 address 2001:db8:acad:2::2/64

R2(config-if)# no shutdown

R2(configif)# interface g0/0/1

R2(config-if)# ip address 192.168.1.2 255.255.255.0

R2(config-if)# ipv6 address fe80::2 link-local

R2(config-if)# ipv6 address 2001:db8:acad:1::2/64

R2(config-if)# no shutdown

R2(configif)# interface lo1

R2(config-if)# ip address 10.2.0.1 255.255.255.0

R2(config-if)# ipv6 address fe80::2 link-local

R2(config-if)# ipv6 address 2001:db8:acad:11::2/64

R2(config-if)# no shutdown

R2(configif)# interface lo2

R2(config-if)# ip address 209.165.200.193 255.255.255.224

R2(config-if)# ipv6 address fe80::2 link-local

R2(config-if)# ipv6 address 2001:db8:acad:210::1/64

R2(config-if)# no shutdown

Step 2:Verify addressing

  1. Issue the command to verify IPv4 assignments to the interfaces.

R1# show ip interface brief

InterfaceIP-AddressOK? Method StatusProtocol

GigabitEthernet0/0/0172.16.1.1YES unsetupup

GigabitEthernet0/0/1192.168.1.1YES manual upup

Serial0/1/0unassignedYES unsetupup

Serial0/1/1unassignedYES manual upup

Loopback110.1.0.1YES manual upup

Loopback2209.165.200.225 YES manual upup

f

R2# show ip interface brie

InterfaceIP-AddressOK? Method StatusProtocol

GigabitEthernet0/0/0172.16.1.2YES manual upup

GigabitEthernet0/0/1192.168.1.2YES manual upup

GigabitEthernet0unassignedYES unsetdowndown

Loopback110.2.0.1YES manual upup

Loopback2209.165.200.193 YES manual upup

  1. Issue the command to verify IPv6 assignments to the interfaces.

R1# show ipv6 interface brief

GigabitEthernet0/0/0[up/up]

FE80::1

2001:DB8:ACAD:2::1

GigabitEthernet0/0/1[up/up]

FE80::1

2001:DB8:ACAD:1::1

Loopback1[up/up]

FE80::1

2001:DB8:ACAD:10::1

Loopback2[up/up]

FE80::1

2001:DB8:ACAD:209::1

R2# show ipv6 interface brief

GigabitEthernet0/0/0[up/up]

FE80::2

2001:DB8:ACAD:2::2

GigabitEthernet0/0/1[up/up]

FE80::2

2001:DB8:ACAD:1::2

Loopback1[up/up]

FE80::2

2001:DB8:ACAD:11::2

Loopback2[up/up]

FE80::2

2001:DB8:ACAD:210::1

Step 3:Save your configuration

Save the running configuration to the startup configuration file on both routers.

R1# copy running-config startup-config

R2# copy running-config startup-config

Close configuration window

Part 3:Configure and verify static and default routing for IPv4 on R1 and R2

In Part 3, you will configure static and default routing on R1 and R2 to enable full connectivity between the routers using IPv4. Once again, the static routing being used here is not meant to represent best practice, but to assess your ability to complete the required configurations.

Step 1:On R1, configure a static route to R2’s Loopback1 network, using R2’s G0/0/1 address as the next hop.

open configuration window

  1. Use the ping command to ensure that R2’s G0/0/1 interface is reachable.
  2. Configure a static route for R2’s Loopback1 network via R2’s G0/0/1 address.

R1(config)# ip route 10.2.0.0 255.255.255.0 192.168.1.2

Step 2:On R1, configure a static default route via R2’s G0/0/0 address.

  1. Use the ping command to ensure that R2’s G0/0/0 interface is reachable.
  2. Configure a static default route via R2’s G0/0/0 address.

R1(config)# ip route 0.0.0.0 0.0.0.0 172.16.1.2

Step 3:On R1, configure a floating static default route via R2’s G0/0/1 address.

Configure a floating static default route with an AD of 80 via R2’s G0/0/1 address.

R1(config)# ip route 0.0.0.0 0.0.0.0 192.168.1.2 80

Step 4:On R2, configure a static default route via R1’s G0/0/0 address

  1. Use the ping command to ensure that R1’s G0/0/0 interface is reachable.
  2. Configure a static default route via R1’s G0/0/0 address.

R2(config)# ip route 0.0.0.0 0.0.0.0 172.16.1.1

Step 5:Verify that the routes are operational.

  1. Use the show ip route command to ensure that R1’s routing table shows the static and default routes.

R1# show ip route

Codes: L – local, C – connected, S – static, R – RIP, M – mobile, B – BGP

D – EIGRP, EX – EIGRP external, O – OSPF, IA – OSPF inter area

N1 – OSPF NSSA external type 1, N2 – OSPF NSSA external type 2

E1 – OSPF external type 1, E2 – OSPF external type 2

i – IS-IS, su – IS-IS summary, L1 – IS-IS level-1, L2 – IS-IS level-2

ia – IS-IS inter area, * – candidate default, U – per-user static route

o – ODR, P – periodic downloaded static route, H – NHRP, l – LISP

a – application route

+ – replicated route, % – next hop override, p – overrides from PfR

Gateway of last resort is 172.16.1.2 to network 0.0.0.0

S*0.0.0.0/0 [1/0] via 172.16.1.2

10.0.0.0/8 is variably subnetted, 3 subnets, 2 masks

C10.1.0.0/24 is directly connected, Loopback1

L10.1.0.1/32 is directly connected, Loopback1

S10.2.0.0/24 [1/0] via 192.168.1.2

172.16.0.0/16 is variably subnetted, 2 subnets, 2 masks

C172.16.1.0/24 is directly connected, GigabitEthernet0/0/0

L172.16.1.1/32 is directly connected, GigabitEthernet0/0/0

192.168.1.0/24 is variably subnetted, 2 subnets, 2 masks

C192.168.1.0/24 is directly connected, GigabitEthernet0/0/1

L192.168.1.1/32 is directly connected, GigabitEthernet0/0/1

209.165.200.0/24 is variably subnetted, 2 subnets, 2 masks

C209.165.200.224/27 is directly connected, Loopback2

L209.165.200.225/32 is directly connected, Loopback2

  1. On R1, issue the command traceroute 10.2.0.1. The output should show that the next hop is 192.168.1.2.

R1# traceroute 10.2.0.1

Type escape sequence to abort.

Tracing the route to 10.2.0.1

VRF info: (vrf in name/id, vrf out name/id)

1 192.168.1.2 1 msec *2 msec

  1. On R1, issue the command traceroute 209.165.200.193. The output should show that the next hop is 172.16.1.2.

R1# traceroute 209.165.200.193

Type escape sequence to abort.

Tracing the route to 209.165.200.193

VRF info: (vrf in name/id, vrf out name/id)

1 172.16.1.2 2 msec *3 msec

  1. Issue the shutdown command on R1 G0/0/0.

R1# config terminal

R1(config)# interface g0/0/0

R1(config-if)# shutdown

R1(config-if)# end

  1. Demonstrate that the floating static route is working. First, issue the show ip route static command. You should see two static routes. A default static route with an AD of 80 and a static route to the 10.2.0.0/24 network with an AD of 1.

R1# show ip route static

Codes: L – local, C – connected, S – static, R – RIP, M – mobile, B – BGP

D – EIGRP, EX – EIGRP external, O – OSPF, IA – OSPF inter area

N1 – OSPF NSSA external type 1, N2 – OSPF NSSA external type 2

E1 – OSPF external type 1, E2 – OSPF external type 2

i – IS-IS, su – IS-IS summary, L1 – IS-IS level-1, L2 – IS-IS level-2

ia – IS-IS inter area, * – candidate default, U – per-user static route

o – ODR, P – periodic downloaded static route, H – NHRP, l – LISP

S*0.0.0.0/0 [80/0] via 192.168.1.2

10.0.0.0/8 is variably subnetted, 3 subnets, 2 masks

S10.2.0.0/24 [1/0] via 192.168.1.2

  1. Demonstrate the floating static route is working by issuing the traceroute 209.165.200.193 command. The traceroute will show the next hop as 192.168.1.2.

R1# traceroute 209.165.200.193

Type escape sequence to abort.

Tracing the route to 209.165.200.193

VRF info: (vrf in name/id, vrf out name/id)

1 192.168.1.2 1 msec *1 msec

  1. Issue the no shutdown command on R1 G0/0/0.

R1# config terminal

R1(config)# interface g0/0/0

R1(config-if)# no shutdown

R1(config-if)# end

Close configuration window

Part 4:Configure and verify static and default routing for IPv6 on R1 and R2

In Part 4, you will configure static and default routing on R1 and R2 to enable full connectivity between the routers using IPv6. Once again, the static routing being used here is not meant to represent best practice, but to assess your ability to complete the required configurations.

Step 1:On R2, configure a static route to R1’s Loopback1 network, using R1’s G0/0/1 address as the next hop.

Open configuration window

  1. Use the ping command to ensure that R1’s G0/0/1 interface is reachable.
  2. Configure a static route for R1’s Loopback1 network via R1’s G0/0/1 address.

R2(config)# ipv6 route 2001:db8:acad:10::/64 2001:db8:acad:1::1

Step 2:On R2, configure a static default route via R1’s G0/0/0 address.

  1. Use the ping command to ensure that R1’s G0/0/0 interface is reachable.
  2. Configure a static default route via R1’s G0/0/0 address.

R2(config)# ipv6 route ::/0 2001:db8:acad:2::1

Step 3:On R2, configure a floating static default route via R1’s G0/0/1 address.

Configure a floating static default route with an AD of 80 via R2’s G0/0/1 address.

R2(config)# ipv6 route ::/0 2001:db8:acad:1::1 80

Step 4:On R1, configure a static default route via R1’s G0/0/0 address.

  1. Use the ping command to ensure that R2’s G0/0/0 interface is reachable.
  2. Configure a static default route via R2’s G0/0/0 address.

R1(config)# ipv6 route ::/0 2001:db8:acad:2::2

Step 5:Verify that the routes are operational.

  1. Use the show ipv6 route command to ensure that R2’s routing table shows the static and default routes.

R2# show ipv6 route

IPv6 Routing Table – default – 11 entries

Codes: C – Connected, L – Local, S – Static, U – Per-user Static route

B – BGP, R – RIP, H – NHRP, I1 – ISIS L1

I2 – ISIS L2, IA – ISIS interarea, IS – ISIS summary, D – EIGRP

EX – EIGRP external, ND – ND Default, NDp – ND Prefix, DCE – Destination

NDr – Redirect, RL – RPL, O – OSPF Intra, OI – OSPF Inter

OE1 – OSPF ext 1, OE2 – OSPF ext 2, ON1 – OSPF NSSA ext 1

ON2 – OSPF NSSA ext 2, a – Application

S ::/0 [1/0]

via 2001:DB8:ACAD:2::1

C2001:DB8:ACAD:1::/64 [0/0]

via GigabitEthernet0/0/1, directly connected

L2001:DB8:ACAD:1::2/128 [0/0]

via GigabitEthernet0/0/1, receive

C2001:DB8:ACAD:2::/64 [0/0]

via GigabitEthernet0/0/0, directly connected

L2001:DB8:ACAD:2::2/128 [0/0]

via GigabitEthernet0/0/0, receive

S2001:DB8:ACAD:10::/64 [1/0]

via 2001:DB8:ACAD:1::1

C2001:DB8:ACAD:11::/64 [0/0]

via Loopback1, directly connected

L2001:DB8:ACAD:11::1/128 [0/0]

via Loopback1, receive

C2001:DB8:ACAD:210::/64 [0/0]

via Loopback2, directly connected

L2001:DB8:ACAD:210::1/128 [0/0]

via Loopback2, receive

LFF00::/8 [0/0]

via Null0, receive

  1. On R2, issue the command traceroute 2001:db8:acad:10::1. The output should show that the next hop is 2001:db8:acad:1::1.

R2# traceroute 2001:db8:acad:10::1

Type escape sequence to abort.

Tracing the route to 2001:DB8:ACAD:10::1

1 2001:DB8:ACAD:1::1 6 msec 1 msec 1 msec

  1. On R2, issue the command traceroute 2001:db8:acad:209::1. The output should show that the next hop is 2001:db8:acad:2::1.

R2# traceroute 2001:db8:acad:209::1

Type escape sequence to abort.

Tracing the route to 2001:DB8:ACAD:209::1

1 2001:DB8:ACAD:2::1 1 msec 2 msec 1 msec

  1. Issue the shutdown command on R2 G0/0/0.

R2# config terminal

R2(config)# interface g0/0/0

R2(config-if)# shutdown

R2(config-if)# end

  1. Demonstrate the floating static route is working. First issue the show ipv6 route static command. You should see two static routes. A default static route with an AD of 80 and a static route to the 2001:db8:acad:10::/64 network with an AD of 1.

R2# show ipv6 route static

Codes: C – Connected, L – Local, S – Static, U – Per-user Static route

B – BGP, R – RIP, H – NHRP, I1 – ISIS L1

I2 – ISIS L2, IA – ISIS interarea, IS – ISIS summary, D – EIGRP

NDr – Redirect, RL – RPL, O – OSPF Intra, OI – OSPF Inter

OE1 – OSPF ext 1, OE2 – OSPF ext 2, ON1 – OSPF NSSA ext 1

ON2 – OSPF NSSA ext 2, a – Application

S ::/0 [80/0]

via 2001:DB8:ACAD:1::1

S2001:DB8:ACAD:10::/64 [1/0]

via 2001:DB8:ACAD:1::1

  1. Lastly, demonstrate that the floating static route is working by issuing the traceroute 2001:db8:acad:209::1 command. The traceroute will show the next hop as 2001:db8:acad:1::1.

R2# traceroute 2001:db8:acad:209::1

Type escape sequence to abort.

Tracing the route to 2001:DB8:ACAD:209::1

1 2001:DB8:ACAD:1::1 2 msec 1 msec 1 msec

Close configuration window

Router Interface Summary Table

Router Model

Ethernet Interface #1

Ethernet Interface #2

Serial Interface #1

Serial Interface #2

1800

Fast Ethernet 0/0 (F0/0)

Fast Ethernet 0/1 (F0/1)

Serial 0/0/0 (S0/0/0)

Serial 0/0/1 (S0/0/1)

1900

Gigabit Ethernet 0/0 (G0/0)

Gigabit Ethernet 0/1 (G0/1)

Serial 0/0/0 (S0/0/0)

Serial 0/0/1 (S0/0/1)

2801

Fast Ethernet 0/0 (F0/0)

Fast Ethernet 0/1 (F0/1)

Serial 0/1/0 (S0/1/0)

Serial 0/1/1 (S0/1/1)

2811

Fast Ethernet 0/0 (F0/0)

Fast Ethernet 0/1 (F0/1)

Serial 0/0/0 (S0/0/0)

Serial 0/0/1 (S0/0/1)

2900

Gigabit Ethernet 0/0 (G0/0)

Gigabit Ethernet 0/1 (G0/1)

Serial 0/0/0 (S0/0/0)

Serial 0/0/1 (S0/0/1)

4221

Gigabit Ethernet 0/0/0 (G0/0/0)

Gigabit Ethernet 0/0/1 (G0/0/1)

Serial 0/1/0 (S0/1/0)

Serial 0/1/1 (S0/1/1)

4300

Gigabit Ethernet 0/0/0 (G0/0/0)

Gigabit Ethernet 0/0/1 (G0/0/1)

Serial 0/1/0 (S0/1/0)

Serial 0/1/1 (S0/1/1)

Note: To find out how the router is configured, look at the interfaces to identify the type of router and how many interfaces the router has. There is no way to effectively list all the combinations of configurations for each router class. This table includes identifiers for the possible combinations of Ethernet and Serial interfaces in the device. The table does not include any other type of interface, even though a specific router may contain one. An example of this might be an ISDN BRI interface. The string in parenthesis is the legal abbreviation that can be used in Cisco IOS commands to represent the interface.

End of document

Device Configs – Final

Router R1

R1# show run

Building configuration…

Current configuration : 1877 bytes

!

version 16.9

service timestamps debug datetime msec

service timestamps log datetime msec

service password-encryption

platform qfp utilization monitor load 80

no platform punt-keepalive disable-kernel-core

!

hostname R1

!

boot-start-marker

boot-end-marker

!

enable secret 5 $1$RYDJ$t/c7oO27si0aj8ubUL4Zm0

!

no aaa new-model

!

no ip domain lookup

!

login on-success log

!

subscriber templating

!

ipv6 unicast-routing

multilink bundle-name authenticated

!

spanning-tree extend system-id

!

redundancy

mode none

!

interface Loopback1

ip address 10.1.0.1 255.255.255.0

ipv6 address FE80::1 link-local

ipv6 address 2001:DB8:ACAD:10::1/64

!

interface Loopback2

ip address 209.165.200.225 255.255.255.224

ipv6 address FE80::1 link-local

ipv6 address 2001:DB8:ACAD:209::1/64

!

interface GigabitEthernet0/0/0

ip address 172.16.1.1 255.255.255.0

ipv6 address FE80::1 link-local

ipv6 address 2001:DB8:ACAD:2::1/64

negotiation auto

!

interface GigabitEthernet0/0/1

ip address 192.168.1.1 255.255.255.0

negotiation auto

ipv6 address FE80::1 link-local

ipv6 address 2001:DB8:ACAD:1::1/64

!

interface Serial0/1/0

no ip address

!

interface Serial0/1/1

no ip address

!

ip forward-protocol nd

no ip http server

ip http secure-server

ip route 0.0.0.0 0.0.0.0 172.16.1.2

ip route 0.0.0.0 0.0.0.0 192.168.1.2 80

ip route 10.2.0.0 255.255.255.0 192.168.1.2

!

ipv6 route ::/0 2001:DB8:ACAD:2::2

!

control-plane

!

banner motd ^C Authorized Users Only! ^C

!

line con 0

password 7 02050D480809

login

transport input none

stopbits 1

line aux 0

stopbits 1

line vty 0 4

password 7 0822455D0A16

login

!

end

Router R2

R2# show run

Building configuration…

Current configuration : 1881 bytes

!

version 16.9

service timestamps debug datetime msec

service timestamps log datetime msec

service password-encryption

platform qfp utilization monitor load 80

no platform punt-keepalive disable-kernel-core

!

hostname R2

!

boot-start-marker

boot-end-marker

!

enable secret 5 $1$UiZY$inHX.hTsQ1oHjw81NXiLb/

!

no aaa new-model

!

no ip domain lookup

!

login on-success log

!

subscriber templating

!

ipv6 unicast-routing

multilink bundle-name authenticated

!

spanning-tree extend system-id

!

redundancy

mode none

!

interface Loopback1

ip address 10.2.0.1 255.255.255.0

ipv6 address FE80::2 link-local

ipv6 address 2001:DB8:ACAD:11::2/64

!

interface Loopback2

ip address 209.165.200.193 255.255.255.224

ipv6 address FE80::2 link-local

ipv6 address 2001:DB8:ACAD:210::1/64

!

interface GigabitEthernet0/0/0

ip address 172.16.1.2 255.255.255.0

shutdown

ipv6 address FE80::2 link-local

ipv6 address 2001:DB8:ACAD:2::2/64

!

interface GigabitEthernet0/0/1

ip address 192.168.1.2 255.255.255.0

negotiation auto

ipv6 address FE80::2 link-local

ipv6 address 2001:DB8:ACAD:1::2/64

!

interface Serial0/1/0

no ip address

!

interface Serial0/1/1

no ip address

!

ip forward-protocol nd

no ip http server

ip http secure-server

ip route 0.0.0.0 0.0.0.0 172.16.1.1

!

ipv6 route 2001:DB8:ACAD:10::/64 2001:DB8:ACAD:1::1

ipv6 route ::/0 2001:DB8:ACAD:1::1 80

ipv6 route ::/0 2001:DB8:ACAD:2::1

!

!

control-plane

!

banner motd ^C Authorized Users Only! ^C

!

line con 0

password 7 045802150C2E

login

transport input none

stopbits 1

line aux 0

stopbits 1

line vty 0 4

password 7 14141B180F0B

login

!

end

Switch S1

S1# show run

Building configuration…

Current configuration : 1707 bytes

!

version 15.2

no service pad

service timestamps debug datetime msec

service timestamps log datetime msec

service password-encryption

!

hostname S1

!

boot-start-marker

boot-end-marker

!

enable secret 5 $1$.IEP$MS5z.mITakTYTwLWyXHxI0

!

no aaa new-model

system mtu routing 1500

!

!

no ip domain-lookup

!

!

spanning-tree mode pvst

spanning-tree extend system-id

!

vlan internal allocation policy ascending

!

!

interface FastEthernet0/1

shutdown

!

interface FastEthernet0/2

shutdown

!

interface FastEthernet0/3

shutdown

!

interface FastEthernet0/4

!

interface FastEthernet0/5

!

interface FastEthernet0/6

shutdown

!

interface FastEthernet0/7

shutdown

!

interface FastEthernet0/8

shutdown

!

interface FastEthernet0/9

shutdown

!

interface FastEthernet0/10

shutdown

!

interface FastEthernet0/11

shutdown

!

interface FastEthernet0/12

shutdown

!

interface FastEthernet0/13

shutdown

!

interface FastEthernet0/14

shutdown

!

interface FastEthernet0/15

shutdown

!

interface FastEthernet0/16

shutdown

!

interface FastEthernet0/17

shutdown

!

interface FastEthernet0/18

shutdown

!

interface FastEthernet0/19

shutdown

!

interface FastEthernet0/20

shutdown

!

interface FastEthernet0/21

shutdown

!

interface FastEthernet0/22

shutdown

!

interface FastEthernet0/23

shutdown

!

interface FastEthernet0/24

shutdown

!

interface GigabitEthernet0/1

shutdown

!

interface GigabitEthernet0/2

shutdown

!

interface Vlan1

no ip address

!

ip http server

ip http secure-server

!

banner motd ^C Authorized Users Only! ^C

!

line con 0

password 7 121A0C041104

login

line vty 0 4

password 7 121A0C041104

login

line vty 5 15

login

!

end

Switch S2

S2# show run

Building configuration…

Current configuration : 1707 bytes

!

version 15.2

no service pad

service timestamps debug datetime msec

service timestamps log datetime msec

service password-encryption

!

hostname S2

!

boot-start-marker

boot-end-marker

!

enable secret 5 $1$IYmC$UST.4nznlABNG3REPrLc7/

!

no aaa new-model

system mtu routing 1500

!

!

no ip domain-lookup

!

!

spanning-tree mode pvst

spanning-tree extend system-id

!

vlan internal allocation policy ascending

!

!

interface FastEthernet0/1

shutdown

!

interface FastEthernet0/2

shutdown

!

interface FastEthernet0/3

shutdown

!

interface FastEthernet0/4

!

interface FastEthernet0/5

!

interface FastEthernet0/6

shutdown

!

interface FastEthernet0/7

shutdown

!

interface FastEthernet0/8

shutdown

!

interface FastEthernet0/9

shutdown

!

interface FastEthernet0/10

shutdown

!

interface FastEthernet0/11

shutdown

!

interface FastEthernet0/12

shutdown

!

interface FastEthernet0/13

shutdown

!

interface FastEthernet0/14

shutdown

!

interface FastEthernet0/15

shutdown

!

interface FastEthernet0/16

shutdown

!

interface FastEthernet0/17

shutdown

!

interface FastEthernet0/18

shutdown

!

interface FastEthernet0/19

shutdown

!

interface FastEthernet0/20

shutdown

!

interface FastEthernet0/21

shutdown

!

interface FastEthernet0/22

shutdown

!

interface FastEthernet0/23

shutdown

!

interface FastEthernet0/24

shutdown

!

interface GigabitEthernet0/1

shutdown

!

interface GigabitEthernet0/2

shutdown

!

interface Vlan1

no ip address

!

ip http server

ip http secure-server

!

banner motd ^C Authorized Users Only! ^C

!

line con 0

password 7 00071A150754

login

line vty 0 4

password 7 00071A150754

login

line vty 5 15

login

!

end